Math 201-Midterm (Summer 17)

B. Shayya and H. Yamani

• Please write your section number on your booklet.

• Please answer each problem on the indicated page(s) of the booklet. Any part of your answer not written on the indicated page(s) will not be graded.

• Unjustified answers will receive little or no credit.

Problem 1 (answer on page 1 of the booklet.)

(8 pts each) Which of the following sequences converge, and which diverge? Find the limit of each convergent sequence.

$$a_n = \left(\frac{n-2}{n}\right)^n \qquad b_n = n\left(e^{5/n} - 1\right) \qquad c_n = \left(1 - \frac{\sin n}{n}\right)^n \left(\frac{(-1)^n}{4} + \frac{1}{2}\right)^n$$

Problem 2 (answer on page 2 of the booklet.)

(8 pts each) Which of the following series converge, and which diverge? When possible, find the sum of the series.

(i)
$$\sum_{n=0}^{\infty} \frac{(-2)^{n+1}}{3^{n+2}}$$
 (ii) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(\sin n)^9}{n^8}$ (iii) $\sum_{n=1}^{\infty} n^{0.1} \ln \left(1 + \frac{1}{n\sqrt{n}}\right)$

Problem 3 (answer on page 3 of the booklet.)

(15 pts) Find the interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{1}{n \ln n} (x+4)^n$.

Problem 4 (answer on page 4 of the booklet.) (10 pts) State and prove the *n*-th term test.

Problem 6 (answer on page 5 of the booklet.)

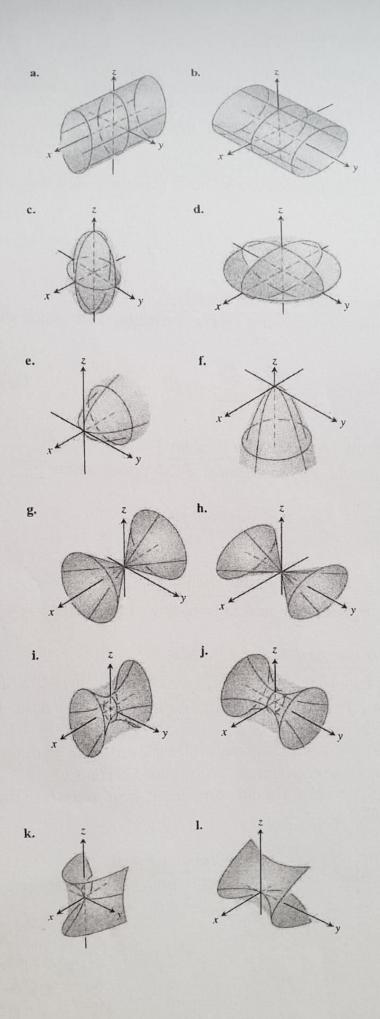
(11 pts) Find the tangent plane and normal line of the cone $z = -\sqrt{x^2 + y^2}$ at the point (3, 4, -5).

Problem 6 (answer on page 6 of the booklet.)

(i) (8 pts) Use the fact that $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ for all $x \in \mathbb{R}$ to find a power series expansion for the function $f(x) = \cos x$ about the point x = 0. Also, find the Taylor polynomial $p_4(x)$ generated by f at the point x = 0.

(ii) (8 pts) Use ASET to estimate cos(0.1) with an error of magnitude less than 10^{-8} . Does your estimate tend to be an over-estimate or an under-estimate?

(iii) (8 pts) Let $p_4(x)$ be the Taylor polynomial from part (i). Use Taylor's theorem to prove that $\cos x < p_4(x)$ for all $0 \le x \le \pi$.


Problem 7 (answer on page 7 of the booklet.)

(12 pts) Match each of the following equations with the surface on the back of this page that it defines.

1.
$$x^2 + 2z^2 = 8$$

2. $z^2 + x^2 - y^2 = 1$
3. $9y^2 + z^2 = 16$
4. $9x^2 + 4y^2 + 2z^2 = 36$
5. $x = z^2 - y^2$
6. $y^2 = x^2 + 4z^2$
7. $x = -y^2 - z^2$
8. $x = y^2 - z^2$
9. $x^2 + y^2 + 4z^2 = 10$
10. $z = -4x^2 - y^2$
11. $z^2 + 4y^2 - 4x^2 = 4$
12. $x^2 = y^2 + z^2$

7.
$$x = -y^2 - z^2$$

8. $x = y^2 - z^2$
9. $x^2 + y^2 + 4z^2 = 10$
10. $z = -4x^2 - y^2$
11. $z^2 + 4y^2 - 4x^2 = 4$
12. $x^2 = y^2 + z^2$

Your answer should be written in the form number — letter.

